QTL for Yield Traits and Their Association with Functional Genes in Response to Phosphorus Deficiency in Brassica napus
نویسندگان
چکیده
BACKGROUND Oilseed rape (Brassica napus L.) is one of the most important oil crops. A primary limitation to the cultivation of this crop is the lack of available phosphorus (P) in soils. To elucidate the genetic control of P deficiency tolerance in Brassica napus, quantitative trait locus (QTL) for seed yield and yield related-traits in response to P deficiency were identified using a double haploid mapping population (TN DH) derived from a cross between a P-efficient cultivar, Ningyou 7 and a P-inefficient cultivar, Tapidor. RESULTS Three field trials were conducted to determine seed yield (SY), plant height (PH), number of primary branches (BN), height to the first primary branch (FBH), relative first primary branch height (RBH), pod number per plant (PN), seed number per pod (SN) and seed weight of 1,000 seeds (SW) in 188 lines of TN DH population exposed to low P (LP) and optimal P (OP) conditions. P deficiency decreased PH, BN, SN, PN and SY, and increased FBH and RBH with no effect on SW. Three reproducible LP-specific QTL regions were identified on chromosomes A2, A3 and A5 that controlled SN, PN and SW respectively. In addition, six reproducible constitutive regions were also mapped with two each for SY-LP on A2, and FBH-LP on C6 and one each for PH-LP and SW-LP on A3. About 30 markers derived from 19 orthologous genes involved in Arabidopsis P homeostasis were mapped on 24 QTL regions by comparative mapping between Arabidopsis and Brassica napus. Among these genes, GPT1, MGD2 and SIZ1 were associated with two major loci regulating SY-LP and other yield-related traits on A2 between 77.1 and 95.0 cM. CONCLUSION The stable QTLs detected under LP conditions and their candidate genes may provide useful information for marker-assisted selection in breeding high-yield B. napus varieties with improved P efficiency.
منابع مشابه
Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. jun...
متن کاملDissecting Quantitative Trait Loci for Boron Efficiency across Multiple Environments in Brassica napus
High yield is the most important goal in crop breeding, and boron (B) is an essential micronutrient for plants. However, B deficiency, leading to yield decreases, is an agricultural problem worldwide. Brassica napus is one of the most sensitive crops to B deficiency, and considerable genotypic variation exists among different cultivars in response to B deficiency. To dissect the genetic basis o...
متن کاملGenome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus
Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP),...
متن کاملGenome-Wide Association Study Reveals the Genetic Architecture Underlying Salt Tolerance-Related Traits in Rapeseed (Brassica napus L.)
Soil salinity is a serious threat to agriculture sustainability worldwide. Salt tolerance at the seedling stage is crucial for plant establishment and high yield in saline soils; however, little information is available on rapeseed (Brassica napus L.) salt tolerance. We evaluated salt tolerance in different rapeseed accessions and conducted a genome-wide association study (GWAS) to identify sal...
متن کاملQTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus
Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-o...
متن کامل